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ABSTRACT 

An apparently new stochast ic  cont ro l  algorithm, herein ca l led  M-meas- 
urement-optimal feedback control,  i s  described fo r  d i scre te  time systems. 
This scheme incorporates M fu ture  measurements i n to  t h e  control  computations: 
when M i s  zero, it reduces t o  the  well-known open-loop-optimal feedback 
control; when M i s  the  ac tua l  number of measurements remaining i n  t he  prob- 
lem, it becomes the  t ruly optimal s tochast ic  control.  
may also be used t o  simplify computations when the  p lan t  i s  nonlinear, when 
the  controls are constrained, o r  when the  cost  i s  nonquadratic. 
r e s u l t s  are  presented which show the  super ior i ty  of the new algorithm over 
the  open-loop-optimal feedback control.  

This new algorithm 

Simulation 

I. INTRODUCTION 

I n  most cases of p r a c t i c a l  i n t e re s t  it i s  exceedingly d i f f i c u l t  t o  
obtain the  solut ion t o  t h e  optimal s tochast ic  control  problem (or combined 
estimation and control  problem) i f  the  plant  and/or measurement equations 
a re  nonlinear, i f  the  control  i s  constrained, or i f  the  cost  i s  non-quadra- 
t i c .  Different suboptimal control  algorithms have evolved as a compromise 
between computational e f f o r t  and a des i re  t o  incorporate r e a l i s t i c  modeling 
of the uncertaint ies  involved. One widely used algorithm i s  the  so-called 
open-loop-optimal feedback control  el] , i n  which the  control  act ion i s  
computed under the  assumption t h a t  no measurements are  t o  be taken in  the  
future .  

control,  assumes t h a t  M measurements a re  t o  be taken i n  the  future .  This 
control  is more akin t o  Feldbaum's "dual control" theory L23 than the  open- 
loop-optimal feedback control,  since the  control  not only "directs" t h e  
s t a t e ,  but can a l so  "probe" o r  learn  about t he  s t a t e .  The same concept can 
be used t o  t r e a t  other difficult-to-handle constraints  such as nonlinear 
statelmeasurement equations, constrained controls,  and nonquadratic cost  
c r i t e r i a ,  

F i r s t  the M-measurement-optimal feedback control  i s  described and 
discussed, and the  spec ia l  case of one future measurement i s  examined i n  
more d e t a i l .  The paper concludes with an example and Monte Carlo simulation 
r e s u l t s  of the  s tochast ic  control  of a l i nea r  plant  with coarsely quantized 
(nonlinear) measurements. 

The algorithm presented here, ca l led  M-measurement-optimal feedback 

11. M-MELU~IiT-OFTIMAL FEEDBACK CONTROL 

Description of the  Control Algorithm 

are recorded up t o  (say) time tk, and an estimate of the  s t a t e  vector (and, 
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The algorithm proceeds as follows: measurements and control  actions 
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perhaps, i t s  conditional probabi l i ty  densi ty  function) i s  &e. 
temporarily assumed t h a t  M measurements are  t o  be taken i n  the  future  (at 
preassigned times), and the control  sequence [%,x+~, . . + 1 is computed t o  

minimize the cost  t o  complete the  process taking M measurements along the  
way. This control  sequence i s  the  M-measurement-optimal control  sequence. 
Only I+, t he  f i rs t  member of t h e  sequence, i s  ac tua l ly  implemented; t h i s  

advances the  time index, a new measurement i s  taken, a new estimate i s  
computed, and the  process of computing a new M-measurement-optimal control  
sequence i s  repeated. 

It i s  

Remarks 

Limiting Forms of t he  Control The M-measurement-optimal feedback 
control  has two l imi t ing  forms: when M is  zero, no fu ture  measurements a re  
included i n  the  control  computations and it becomes the  well-known open- 
loop-optimal feedback control  [lJ ; when M i s  the  ac tua l  number of measure- 
ments remaining i n  the  problem, it becomes the t r u l y  optimal s tochast ic  
control  C23 . 

Qualitative Description 
a re  used i n  the control  computations, hence the name feedback control.  

The primary advantage of the  M-measurement-optimal feedback control  
over other suboptimal control  algorithms i s  t h a t  one or more future  obser- 
vations are incorporated in to  the  control  computations. This allows f o r  
the "probing" o r  " t e s t  signal" type of control  act ion which is  characteris-  
t i c  of the  t r u l y  optimal s tochast ic  control  E23  . The open-loop-optimal 
feedback control  cannot take t h i s  form since future  measurements are 
ignored. 

All avai lable  past  and present measurements 

Extens ions The concept of incorporating M future  measurements ra ther  
than the ac tua l  number of measurements may be used t o  simplify computations 
involving constrained controls,  nonlinear plants,  and nonquadratic cost  
c r i t e r i a  as well. For example, if the  ac tua l  controls are  constrained a t  
a l l  future  times, it can be assumed fo r  t he  purposes of control  computation 
t h a t  they are  constrained only at M future  times and unconstrained a t  a l l  
other times. Similarly, it can be assumed t h a t  t h e  plant  i s  nonlinear only 
a t  M future  times but l i nea r  at a l l  other times, or t h a t  t3e  cost  i s  non- 
quadratic at M future times, but quadratic a t  all- other times. 

I n  a l l  of these s i tua t ions  the  suboptinal control  approaches the  
optimal control  as M approaches the  number of stages remaining i n  the  
problem. Generally speaking, the  computational e f fo r t  w i l l  increase as M 
increases, but the author knows of no analysis t o  show t h a t  the  performance 
w i l l  improve as M increases. 

111. ONE-MEI-1SUREMENT-OPTIMAL FEEDBACK CONTROL 

Problem Statement 

Given: 
a) The s t a t e  equation 

X i+l = fi(Xi,Ui,Wi) i = 0,1,. . . , N  

where x is t h e  s t a t e  vector a t  time ti, u i i 
at time ti, and w. i s  the  process noise a t  time t 

is the  control  vector 

i' 1 

-2 -  



b)  The measurement 

z i = hi(xi,vi) 

where v i s  the  i 

e quat ion 

i = 1, 2, ..., N 

observation noise a t  time t i' 

e)  The cost  c r i t e r i o n  

i = O  L i (Xi ,Ui )  + $(%+I) b 
d) The probabi l i ty  densi ty  functions p(xo), p(wi), p(vi). It i s  

assumed t h a t  t he  vectors xo,{wil , and {v> are  independent. 

e )  For notat ional  convenience l e t  

Open-Loop-Optimal Feedback Control 

The cost  function t o  be minimized by the  open-loop control  a t  time tk 
i s  given by 

This i s  minimized by the cont ro l  sequence 1%'. . .,%I subject t o  the  s t a t e  

constraint  (1). 
optimal feedback control  a t  time tk. 

The f i r s t  member of t h i s  sequence , %, i s  the  open-loop- 

One-Measurement-Optimal Feedback Control 

control. I f  only one fu ture  measurement i s  incorporated in  the  control  

the one-measurement cost  function becomes 

This portion t r e a t s  a spec ia l  case of M-measurement-optimal feedback 

computation a t  time tk, and i f  t h i s  measurement occurs a t  time t k+n> then 

0 I n  t h i s  equation, the  optimum open-loop cost  function J i s  similar t o  

(4) 2f t e r  minimization, but it depends on the  measureme 

the controls Uk+n 1. The f i r s t  member of the  control  s 

t h a t  minimizes (5) i s  the  one-measurement-optimal feedback control  a t  time 

tk' 

- 

The solut ion t o  (5) may s t i l l  be d i f f i c u l t  t o  f ind i n  pract ice .  Even 
i f  the  exp l i c i t  d 
optimal controls 

involves an n-stage two point boundary problem. I f ,  however, the future  

he open-loop cost  function on the open-loop- 
can be removed, the  solut ion of (5 )  s t i l l  
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measurement occurs a t  t h e  "next" time, then (5)  reduces t o  a parameter 
optimization over i.e., t h e  one-measurement cos t  f'unction becomes 

OM,k ' d 4 r ( " k > \ ) +  EI."oL,,l\ 'kjUJ I 'ky'k-1) ( 6 )  

and t h e  controls  I n  t h i s  equation JoL,k+l depends on t h e  measurements %+1 
'k' 

0 

Linear Systems, Quadratic Cost, and Nonlinear Measurements 

i s  l i n e a r  
This sect ion contains some special ized r e s u l t s  when t h e  s t a t e  equation 

i = 0,...9N i x = Qi + G.u. + w i+l 1 1  

and when the cost  i s  quadratic 

J =E{$ xi Aixi + u. T B.u. + 
1= 1 1 1 4+1 %+l xN+l 

( 7 )  

Here the uperscr ipt  T denotes the  transpose, and the weighting matrices 
<Ai) , { B b  m e  pos i t ive  d e f i n i t e .  The measurements may s t i l l  be nonlinear,  

It has been shown b, Appendix D ] tha t  the  optimum open-loop cost  
f'unction i n  t h i s  case i s  given by 

0 T 
JOL, k+l  =E(%+l 'k+l %+lI zk+17uk) 

where tr i s  t h e  t r a c e  of a matrix, and 

S. = Ai + pi T [Si+l - Si+l G. ( B ~  + G~ T si+l GJ'- G: si+J $ii ( io)  
1 

Fi =si Fi+l @ + Ai 

conditioned on Z and Uk. %+l k+l = covariance of Ek+l 

A by-product i n  the der ivat ion of (9) i s  t h e  o en-loop-optimal feedback 
control. A t  time tk it i s  given by L3, p.80 P 

This is  t h e  prec ise  form of t h e  t ruly optimal control  when the measurements 
a r e  l inear ,  the  p lan t  i s  l inear ,  and the cos t  i s  quadratic. 

The equation f o r  the  one-measurement cos t  function with the future 
measurement occuring at  the next time, Eq.(6), becomes 
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T T J !k Xk + "k Bk Vk + xk+l 'k+l xk+l 

Ek+l(Fk+l- 'k+l 'k' 'k' 'k-1 (13 1 

+ const. 

The value of "k t h a t  minimizes (13) i s  t h e  one-measurement-optimal feedback 
control  a t  time t f o r  l i n e a r  systems, quadratic cost, and nonlinear 
measurements. This is  computationally equivalent t o  solving f o r  t he  f i r s t  
control  act ion i n  a two stage process [ 3 ,  pp,67 1. Nonlinear control  act ion 
results from the f a c t  t h a t  t he  conditional covariance E 
function of x. 
control  process.) 
weighting matrix F 

not, the control  would minimize t h e  cost  by degrading, not improving, t h e  
knowledge of t he  s t a t e .  

k 

i n  (13) is  a 
(See E33 for  some numerical r e s u l t s  o$+'the two stage 

It has a l so  been shown i n  [ 3 ,  Appendix D 3 t h a t  t h e  
i s  at least pos i t ive  semidefinite. If it were k+l- 'k+l 

IV .  S m T I O N S  

System Configuration 

For definiteness,  l e t  the  sca la r  state satisfy the  equation 

i = 0, ..., N (14) i = x  + u i + w  i+l i X 

where x i s  the  state, u i s  the  sca la r  control, and w i s  Gaussian process 
noise. The i n i t i a l  conditions also have a Gaussian d is t r ibu t ion .  The cost  
function i s  quadratic i n  nature. 

2 2 A. xi + B. u: + %+1 %+1 
1 1 

Observations a re  taken through a three l e v e l  quantizer shown i n  Fig. 1. 
Observation noise i s  not included i n  t h i s  example. 

Fig. 1. Three Level Quantizer fo r  Observations 

-5 -  



Estimation Procedure 

requires extensive use of the  probabi l i ty  density f ine t ion  of t he  state 
conditioned on past  measurements and control  actions.  Here it is  assumed 
t h a t  the  d i s t r ibu t ion  just  p r i o r  t o  a quantized measurement i s  Gaussian. 
This algorithm has been extensively t r ea t ed  i n  , and appears t o  be a 
good approximation f o r  l i n e a r  systems and quantized measurements. 
d e t a i l s  of calculat ing moments conditioned on quantized measurements can 
a l so  be found i n  u] . 

Obtaining numerical solutions t o  the  s tochast ic  control  problem 

The 

Simulation Description 

optimal feedback control  have been simulated on the  d i g i t a l  computer. 
l a t t e r  algorithm assumes tha t  t h e  one future measurement occurs at t he  next 
time ins tan t .  The control  algorithms used the  same rea l iza t ions  of the  
i n i t i a l  conditions and process noise, although the  state t r a j ec to r i e s ,  i n  
general, were d i f fe ren t .  Each case w a s  run 50 times and the  ensemble aver- 
ages were approximated by the  numerical average of  these 50 t r ia ls .  
I n  a l l  cases the  weighting coef f ic ien ts  for the  control  e f f o r t  { B.] 
are  unity, and the  process noise variance i s  constant, but var ies  Prom 
case t o  case. 
Numerical Results 

Both the  open-loop-optimal feedback control and t h e  one-measurement- 
The 

The r e s u l t s  of a seven stage s tochast ic  process are described. 
Qumti ta t ive  r e s u l t s  axe displayed f o r  a terminal control  problem, and 
the  r e s u l t s  of other simulations are  discussed. 

Terminal Control I n  the  terminal control problem, a l l  s t a t e  weighting 

%e s "more important" than the 
coeff ic ients  are uni ty  except the last  one, 
roughly, tha t  t he  RMS terminal e r ro r  i s  t e n  t 
other quant i t ies  i n  the  cost  function. 

which i s  100. This means, 

Fig. 2 shows the  r e s u l t s  when the measurements are taken through a 
.three l e v e l  quantizer: t he  ensemble mean square s t a t e  and ensemble average 
of the  (approximate) conditional covariance of t h e  s t a t e  are p lo t t ed  as a 
function of time. For t h i s  case, t he  variance of the  process noise i s  0.2, 
and the  quantizer switch points  are  a t  - -t- 1. 

one-measurement control  ac t s  t o  reduce the  conditional covariance of the 
s t a t e  estimate. Note t h a t  t he  ensemble average of t he  conditional covas- 
iance is  about half the average of  the  conditional covariance fo r  t he  open- 
loop control. 
the  conditional d i s t r ibu t ion  of the  measurement near the quantizer switch 
point.  This i s  re f lec ted  i n  the  curves for the  mean square value of t he  
s ta te ,  which stays i n  the  neighborhood of 1.0 [the switch point) for  t he  one- 
measurement control, but gradually goes t o  zero f o r  the  open-loop control. 
The control  e f f o r t  (not shown) f o r  t he  one-measurement control i s  higher, 
and it requires  a la rge  control  act ion a t  the  l as t  application t o  br ing the 
state from the  v i c i n i t y  of the quantizer switch point t o  the origin.  

"he performance penalty of t he  open-loop-optimal feedback control over 
t h e  one-measurement-optimal feedback control  i s  17.1 percent fo r  this case. 
Other sirmilations revealed tha t  the  performance penalty ranged as  high as 
44 percent when observations were taken through a two l e v e l  quantizer. 

The most noticeable difference between the  two control  l a w s  i s  that the 

The one-measurement control  i s  able t o  do t h i s  by centering 

Other Simulations Cost functions other than the  terminal control  type 
were simulated: t he  s t a t e  deviations were weighted more heavily as time 
progressed, o r  e l se  the  weightings were constant. The performance advantage 
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of the  one-measurement control  was always l e s s  than 10 percent i n  these 
cases. This a r i s e s  from the f a c t  t h a t  the  one-measurement control  t r i e s  t o  
move the  s t a t e  around t o  gain information, but these movements are r e s t r i c t -  
ed by the  heavy weighting on the  s t a t e  deviations. 

Thus a qua l i ta t ive  assessment, a t  l e a s t  fo r  l i nea r  systems and nonlinear 
measurements, i s  t h a t  incorporating future  measurements i n  t he  control  
computations w i l l  y i e ld  t h e  grea tes t  re turn  when t h e  cos t  function i s  such 
t h a t  the s t a t e  and/or control  i s  f r e e  t o  reduce uncertainty i n  t h e  estimate. 
I n  other s i tuat ions,  t he  open-loop control  i s  quite a t t r ac t ive ,  especial ly  
because of i t s  computational simplicity.  

V . C ONCLUS IONS 

A new suboptimal s tochast ic  control  algorithm i s  presented which 
incorporates one o r  more fu ture  measurements i n to  the  control  computations. 
The two l imi t ing  forms of the  algorithm are  the  well-known open-loop- 
optimal feedback control  and the  truly optimal s tochast ic  control.  
concept can be extended t o  simplify the  computations f o r  constrained con- 
t r o l s ,  nonlinear plants,  and nonquadratie cost  c r i t e r i a .  A l i nea r  system 
with quantized measurements w a s  simulated t o  compare the  one-measurement- 
optimal feedback control  t o  the  open-loop-optimal feedback control. 
g rea tes t  improvement over the open-loop algorithm occurs i n  those si tuations,  
where the  cost  function gives the  control  and s t a t e  some freedom t o  reduce 
the  uncertainty i n  the s t a t e  estimate. 

This 
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